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,4fistr-aci —A newly developed closed-form asymptotic representation of

the grounded dielectric slab Green’s function can be very efficiently

applied to analyze planar microstrip configurations. In this study, such a
representation is used in a moment method formulation to calculate the

prop~gation constant of an infinite microstrip transmission line and the

input impedance of a finite length, center-fed printed dipole. In these

probllems, source and field points are laterally rather than vertically sepa-

rated with respect to the substrate.The conventionalSommerfeldintegral
and the plane wave spectral hrtegral (PWS) representationsof the mi-
crostrip Green’s function converge very slowly in this case. However, the

asymptotic closed-form representation of the Green’s function does not

have this limitation, and it remains accurate even for very smafl Iatesal

separation between source and observation points. Only for observation

points in the immediate vicinity of the source is a modified form of the

Som]merfeld integral representation used, while the asymptotic form is

empksyed elsewhere. Some numericrd results based on thk approach are

presented and are shown to compare very well with previous results based

on the corresponding exact-integral or PWS forms of the Green’s func-

tion.

1. INTRODUCTION

T HE INCREASING interest in monolithic microwave

integrated circuit (MMIC) technology has led to the

need for accurate, rigorous characterization of passive cir-

cuit and radiating elements, especially in millimeter-wave

regimes. In microstrip structures, CAD tools capable of

handling a wide range of dielectric constants and substrate

thicknesses are required. Although “full-wave” (moment

method based) analyses, of some microstrip geometries

have been reported recently, they involve an enormous

computational effort to numerically evaluate the grounded

dielectric slab Green’s function, either in its plane-wave

spectral (PWS) integral representation [1] or in terms of

Somrnerfeld-type integrals [2]. This effort has been shown

to be reduced drastically by using asymptotic forms of the

Somlmerfeld integrals [3], [4], even valid for observation
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Fig. 1. Geometry c,f an (a) infinite microstrip line and (b) center-fed

printed dipole.

points very close to the source. The purpose of this paper

is to show the application of this newly developed asymp-

totic closed-form approximation of the microstrip ~Jreen’S

function to solve some planar canonical microstrip config-

urations. This efficient asymptotic Green’s function is

specifically applied to the calculation of the propagation

constant of an infinite microstrip transmission line and the

input impedance of a finite-length center-fed microstrip

dipole, shown in Fig. l(a) and (b), respectively.

The format of this paper is as follows. First, Section II

deals with the conventional Sommerfeld integral represen-

tation of the grounded dielectric slab (microstrip) Ch-een’s

function and its closed-form asymptotic approximation.

Section III describes their application to the evaluation of

the propagation constant of an infinite microstrip line,

while a moment method (MM) formulation for the input
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impedance of a center-fed microstrip dipole is presented in

terms of these Green’s functions in Section IV. Finally,

Section V is dedicated to numerical results and conclu-

sions.

11. THE GROUNDED DIELECTRIC SLAB GREEN’S

FUNCTION—CONVENTIONAL INTEGRAL

AND ASYMPTOTIC FORMS

In this section, we will restrict our attention to the jj

component of the grounded dielectric slab Green’s func-

tion (GYP), since it will be the only one used throughout

the paper. It represents the ~-directed electric field at

(x, y) due to a ~-directed electric dipole of unit strength

located at (x’, y’). For source and observation points both

lying on the surface of the slab, G,} can be written in

terms of the conventional Sommerfeld-type integrals as

[3], [4]

where

p= (X–x’)z+(y–y’y

u=~’Ho(gP)Fu(E)cit (2)

w=~m.Jo($p)Fw(&it (3)

and

(4)

(5)

De(f) =~~-j~~.cot[d~~] (6)

Dn($)=~~+~~~”tan[d~~].
r

(7)

In the above equations, k. is the free-space wavenumber,

d the slab thickness, and c. the relative dielectric constant

of the substrate. In the following, c, will be assumed to be

a real number (lossless case). As will be shown later, the

second derivative in (1) can be removed using integration

by parts, so the problem of computing the Green’s func-

tion reduces to one of evaluating the functions U and W.

Two main problems arise in the numerical evaluation of

(2) and (3). First, the integrands exhibit a certain number

of poles (zeros of D,, D~) and, second, the slowly decaying

oscillatory behavior of the Bessel function results in a poor

convergence of the integrals.

A. Numerical Evaluation of U, W for p Small

A relatively efficient technique for evaluating U and W

when p is small (less than one or two free-space wave-

lengths) is the so-called asymptotic (not to be confused

with the closed-form asymptotic representation of the

Green’s function) extraction technique [3], [5], [6]. One

first notes that the functions FU,~ in (2) and (3) tend to

certain limiting values for & large:

F~=~mmFU([)=~ (8)

FW”=tl~m~Fw, (.$) =~&. (9)
r

Therefore, we can rewrite (2) and (3) as

U=F:~~JO(&,) d$+/~Jo(p$){F.( &)-F:} d< (10)

W= F:;Jo($p)d&+;@Jo( p&){ Fw(f)-F:}df
o 0

(11)

Since the first integral has a closed’form result and the

integrand in the second becomes zero for ( large, we can

finally write the above equations as

U=; +f:Jo(pQF;(C)d& (12)

W=; +;’;Jo(Pf)F;(C)d~ (13)
o

where <~ and ~~ are those values of ~ for which Fu = Fum

and Fn = Fw?. These expressions for U and W have two

important advantages over (2) and (3). First, the singular-

ity in U and W has been explicitly extracted (l/p term).

Second, the infinite integration has been reduced to a

finite interval. Typical values of t:, ~~ for p = O (most

unfavorable case) range around 5ko&.

To deal with the poles of FM’~ in (12) and (13), one uses

conventional singularity extraction techniques [3], [5].

These poles will be located on the real $ axis for the

lossless case, in the region [ko, ko~]. Their number and

location depend on the wavenumber, the dielectric con-

stant, and the substrate thickness and can be easily found

using a Newton –Raphson search algorithm with appropri-

ate starting values [7].

The main limitation of this approach comes from the

highly oscillatory behavior of the integrands in (12) and

(13) for large values of p. This makes numerical integration

very inefficient.

B. Asymptotic Closed Forms of U, W for p Large

Although the details of the derivation of the asymptotic

representation can be found in [4], we will summarize the

procedure here as follows.

First, and due to the oddness of Fu, ~, integrals (2) and

(3) can be written as

U=:/CFu($)Hj2)( p$)d& (14)
1

w=:@(f) HJ2)(@i& (15)
1
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Fig. 2. Origimd Sommerfeld contour of integration and its defor-

mation to give the sum of the enclosed residues plus the integral
around the branch cut(C).

where Cl is the path shown in Fig. 2. This path Cl can be

deformed into C as shown in Fig. 2 to give the sum of the

enclosed’ reiidues plus the integral around the branch cut:

(16)

(17)

where Ru ~ arethe residues of FU,W in(4) and(5)at f=t,

(surface wave poles) [4], [7]. The integral around the branch

cut can be transformed to a real-axis integral by introduc-

ing the change of vafiable

FT= ko–$

‘[”s

(18)

to give

lm’r
IU=–

J
—H&)( ~/~) d~

2 _@ D,(’T)
(19)

,,. T2HJ2)(P/5=q
IW=–

2 -~ De(T) .Dm(T) “
(20)

Now consider the general integral

which can be written in a more convenient form, using the

change of variable ~ = koq, as

I=;/_mwodfLP(M=7)dT (2’2)
m

For kop large, we can use the large-argument form of the
Hankel function:

(23)

Y “

—Y’
7r

Fig, 3 Topology in the y plane, showing the original path r and the

steepest descent path r~~P. The position of proper and improper

surface wave poles (lossless case) is also shown.

Although the saddle point and the steepest descent path

(SDP) can be found directly in the complex q plane, it is

more convenient to perform the angular spectru~m map-

ping:

?f=cosy dq = –sinydy. (24)

Then, (23) becomes

+?~: ~.J”/4 F(ko cos y)= e–JkOPs’n~ dy.

(25)

The exponential of (25) exhibits a saddle point at y = 7r/2.

The original path r and the SDP, denoted by ~sDp! are

shown in Fig. 3. Also, Fig. 3 shows the position~ of the

proper and improper surface wave poles for the lossless

case (see [7]). As cart be seen, the deformation of the

original path r into I’sDp will never capture any (Of these

poles. No other poles are assumed to be captured in the

path deformation.

A conventional asymptotic evaluation of (25) can be

carried out via the transformation

siny==l–js2 {-COSY=– S sz+2j

(26)

Now, (25) can be expressed in the complex s plane as

{–

2
1-; -—

arkop
.’”/’e-J’”p/m G(s) e-k0”s2ds (27)

—m

A second-order asymptotic evaluation [8], [9] of (27) will

give the following result. m-ovided G(0) = O (which is the
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DISTANCE (F REE-sp AcE WL)

Fig. 4. Comparison between the exact W (numerical integration, (13))
and its asymptotic approximation (29) for (,=12.8, d=0.12A0.

case for both Uand W):

1–(G“(0) R(b,)
—+~~

+ 2kop 2fi i bi fi )1(29)

where

~–Jw

Io=2j
kop

bi = t eJ”/4
r

;–1
o

(+ for proper surface wave poles

– for improper surface wave poles 1

and G“(0) is the second-order derivative of G(s)

plane, evaluated at s = O. Doing this for U and

obtains

(30)

(31)

in the s

W, one

GJ’(0) = 4j~ &.
?’

(33)

R(bi) in (29) are the residues of (28) at s = bi. These

residues can be easily related to those of the $ plane at
.$=tiby

R(fi)
R(bi) =

~“
(34)

Finally, F(x) in (29) is the transition function (defined in

the Appendix). Fig. 4 shows a comparison between the

numerical evaluation (13) and the asymptotic representa-

tion (29) for the case c, =12.8 and d = 0.12A0 when the

source and field points are separated laterally along the

dielectric–air interface. In the asymptotic evaluation, two

proper and two improper surface wave poles are consid-

ered [7]. As can be seen, the asymptotic formula provides

excellent results, even for source and field point separation

distances as small as two tenths of a wavelength (Ao).

Although the comparison is not as good in all the cases, it

can be said that the lateral source and field point separa-

tions for which the asymptotic solution begins to fail range

typically between 0.2 and 1 wavelength. It should be

mentioned that the above asymptotic result differs slightly

from the one given in [4], where the poles of F in (22) are

extracted in the q plane, and the resulting regular function

is integrated up to the second-order term in closed form.

The remaining integrals over the singularities are then

approximated by their first-order terms. The difference

between this approach and (29) arises in the second-order

term of the asymptotic result, so the numerical difference

between the two formulations is irrelevant in most cases,

although (29) has been preferred here for simplicity.

III. CALCULATION OF THE PROPAGATION CONSTANT

OF AN INFINITE MICROSTRIP LINE

The first “full-wave” analysis of an infinite open mi-

crostrip line was reported by Denlinger [10]. By enforcing

the boundary conditions in the spectral domain, he formu-

lated the problem in terms of a pair of coupled integral

equations, using a PWS integral representation for the

fields. To simplify the solution to those equations he

considered only electrically narrow strips, thus neglecting

the transverse component of the current and assuming a

known analytic variation of the longitudinal component

along the transverse direction. Itoh and Mittra [11] numer-

ically solved Denlinger’s equations in the spectral domain,

expanding both current components over a set of basis

functions and applying Galerkin’s method to obtain a

matrix equation. Later, Farrar and Adams [12] and Jansen

[13] extended the analysis to higher order modes and

coupled rnicrostrip lines. Recently, Kobayashi and Ando

[14] presented a simplified spectral-domain formulation by

using closed-form expressions for the longitudinal and

transverse current distributions. Katehi and Alexopoulos

[15] used the Sommerfeld integral representation for the

grounded dielectric slab Green’s function to compute the

propagation constant of electrically narrow lines. They

expanded the current along the longitudinal direction and

applied Galerkin’s method, assuming a known analytic

variation of the current in the transverse direction.

Since the main purpose of this paper is to show the

usefulness of the closed-form asymptotic representation

for the Green’s function, we have also restricted our atten-

tion to electrically narrow strips. This simplifies the formu-

lation to only one current component. Also, a known

analytic variation of this current along the transverse di-

rection will be assumed.

The boundary condition is enforced in the spatial do-

main, and the Green’s function is expressed in terms of

Sommerfeld-type integrals. These integrals are evaluated

using the numerical method described in subsection II-A

when the distance between source and observation points

is small, but the closed-form asymptotic expressions of
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(29) are employed when the separation becomes larger.

Since the spatial formulation requires an integration over

the infinite length of the strip, the availability of a closed-

form expression not only saves computer time, but also

allows analytic integration when the current element is far

enough. Both facts make possible a very efficient spatial-

dolmain solution.

A. The Boundaiy Condition

Consider an infinite microstrip line (Fig. la) in which

the current is flowing in the J direction. For electrically

narrow strips and the fundamental mode it can be as-

sumed that the 2 component of that current is negligible,

so the current vector may be written in the form

Jlx, y) = F(x) e-Jkeyj (35)

where F(x) is the function describing the variation of the

current density’ along the x direction, and k= is the propa-

gation constant of the mode. Furthermore, F(x)= F( – x)

via symmetry conditions fulfilled by F(x). A widely used

form of F(x) which enforces the edge condition is

{

1

FM(x) = ~~ ‘
1X1< w

(36)

o, otherwise.

Thk distribution was first proposed by Derdinger [10], who

referred to it as Maxwell’s function, because it was derived

by Maxwell for the charge density distribution on an

isolated conducting strip.

It is clear that the tangential electric field produced by J

in (35) must vanish at ‘any point on the metallic strip. This

field can be written as

~,(k,, x,y)

=/wjmF(~’)e-Jkey’Gyy(~Yx’Y’)d~’dY’=o
—w —~

x, y = sttip (37)

where G.Vyrepresents the j-directed electric field at (x, y)

due to a )-directed electric dipole of unit strength placed

at (x’, y’). The above equation is of the form ~(kg) = O,

where # is the operator in (37). Such an equation can be

solved using simple search techniques, such as the interval

halving method or Newton’s method.

Equation (37) admits further simplification if the point

(x, y) selected to enforce the boundary condition is the

center of the strip (O,O). In that case, the symmetry of the

problem and the oddness of the imaginary part of the

exponential reduce (37) to

Jw~(x’)J:mGyy(x’7Y’)cos(~eY’)d~’dY’=o.(38)
o

This equation will be the basis of our calculations and will

be referred to as the boundary condition in the spatial

domain.

B. Field Calculation

From (1) and (38) the j-directed electric field at the

origin can be written as

Ev(ke,O,O) a ~w’F(x’)I(ke, x’) dx’ (39)
o

with

.COS(key’) dy’. (40)

The second derivative before the brackets can be removed

using integration by parts to give

~(k,x’) ‘k;~~UcOs(keY’)dY’

where use has

/{

–1
k: “ U–L

)
W COS ( key’) dy’ (41)

o (r

been made of the following (from (2)-(7)):

(3G dG
——

ay = ayf
(42a)

lim G(x, y,x’, y’) = O (42b)
.pr-+ @

lim ;lG(x, y,x’, y’) =0
y’-cc dy’

(42c)

a
lim —G(x, y,x’, y’)=O

(Y- .P’)+0 ay’
(42d)

where G represents either U or W. Now the problem has

been reduced to that of computing two integrals of the

form

Ic(kj, x’) =~~Gcos(key’) dy’ (43)

where G again represents U or W.

From (12) and (13) we know that G has a singularity of

the type I/p:

G= Ci-G’ (44)
P

where G’ represents the nonsingular part of G.

Such a singularity can be integrated analytically to give

J —======. COS(key’) dy’ = F@Ko(kex’) (45)
o“ pF;yr2

where K. is the zero-order modified Bessel functicln.

Finally we have

Ic(ke, x’) =: F~Ko(kex’) + ~~G’cos(k,y’) dy’. (46)

The integral on the right-hand side of (46) can be calcu-

lated numerically, since G’ does not contain any singular-

ity. This numerical integration is terminated at certain y:

for which the integrals in (16) and (17) become negligible.

From such region to infinity only surface waves exist, and
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their contribution can be evaluated analytically. In most

cases, y; ranges from five to ten free-space wavelengths.

The value of G’ in (46) is calculated numerically only for

small distances between source and field points, but the

efficient closed-form asymptotic representation is used

along most of the range of integration.

Going back to (39), the field can then be calculated as

Ey(k,, O!O) u (k; – k?)(F~~wF(x’)KO( kex’) dx’

The first integral between braces can again be evaluated

analytically for ,F(x’) of the form (36) as [16]

0 z~
o 001 002 0.

/x X.

To evaluate the second integral, we first note that the

functions

~G’(k=, X’) = ~% ’cos(ke,’) dy’ (49)

have a quite smooth variation with x’ for small x’, which

is precisely the case for electrically narrow lines. It follows

that, these functions can be very accurately approximated

by an n th-order polynomial, namely

Ic’(kc,.x’) = A,+ AIX’+ . . . + AnX’” (50)

with the advantage that F~(x’). lG’( k,x’) can be inte-

grated on x’ in closed form [16]:
t2n+l

J
,“J> dx’= ~2~;!;)!! w2”+l (51)

12n+l

J

dx, = (2n-l)!! ‘n

.“ ~~ (Zn)!! j~2”
(52)

where (2n)!!= 2 -4--- (2iz), and (2n +1)!! =1.3 .-.

(2n + 1).

Fig. 5 shows the behavior of I“ corresponding to the

case of Fig. 4 and its second-order polynomial approxima-

tion (if the order of the polynomial is increased to four, the

value of the integral over x’ differs less than 0.1 percent

from the second-order polynomial value).

So finally, (47) can be written as

(53)

)3

Fig. 5. Variation of the integral (49) as a function of .x’ for the case of
Fig. 4 and its second-order polynomial approximation ( k, = 3ko).

N

0

—
>=

(.d O

o
0

ke /kO

Fig. 6. Typicaf variation of the tangential electric field on the center of

the strip as a function of the propagation constant k, The zero field

boundary condition is satlsfled at k,= ko~crCr, (cr = 12.8, d = 0.12X0,

2u, = 0.06XO).

Now a plot of IE> I versus kC/,ko should exhibit a zero

at that ke = ko~ corresponding to the mode actually

propagating in the transmission line. Fig. 6 shows typical

results.

To automatically find ~, a Newton–Raphson search

procedure can be implemented in the equation

Re{E, (k,, O,O)} =0. (54)

r
Using the quasi-static value of c,,,, or simply & as the

starting point, the final value is found in only a few

iterations (normally two to four).
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IV. MOMENT METHODS• LUTIONFOR THE INPUT

IMPEDANCE OF A CENTER-FED PRINTED

STRIP DIPOLE

The printed dipole was first treated with an assumed

sinusoidal current distribution by Tsandoulas [17] and

Uzunoglu et al. [18]; later Rana and Alexopoulos [19]

introduced the moment method (MM) solution for the

center-fed printed dipole by expanding the unknown cur-

rent of the dipole by piecewise-sinusoidal (PS) basis func-

tions. This work was then extended to different geometries

by Katehi and Alexopoulos [20], [21]. It is noted that the

MM solution of such geometries is very time consuming

because the grounded dielectric slab Green’s function in-

volved in the formulation is very poorly convergent, as

mentioned earlier.

In the following, an efficient MM calculation of the

input impedance for the printed strip dipole shown in Fig.

l(b) will be discussed. The printed strip dipole considered

here is center-fed by a delta gap generator and has the

length L and the width 2 w. The unknown longitudinal

current on the strip has been expanded by N overlapping

PS basis functions. The transversal current variation is

chosen such that the current satisfies the edge condition

[3], [21] and is in the form of (36).

The MM matrix equation is then formulated as

[zmn][In]=[vn]

NxNNxl Nx1 (55)

where Z~~ is the reaction between the test function n and

the basis function m; the In’s are unknown coefficients of

the basis functions which ought to be determined from the
ab,~ve matrix equation and the V.’s are excitations. For the

center-fed delta gap generator type excitation, the input

impedance of the printed strip dipole Z1. is numerically

given by

1

‘in = 1(0)
(56)

where 1(0) is the value of the current at the center of the

strip dipole.

The efficient evaluation of Ztim is the key to an efficient

MM solution for the input impedance of the printed strip

dipole. In the following such efficient formulation of Z~.

will be presented. It is recalled that Z~. can be written

as [3]

z..=~::J:w~’:Jw J:(.’,,’)—w

,GyyO.lm(X, y) dx’dy’dxdy (57)

where GYY is the -jj component of the microstrip dyadic

Green’s function and was given in (l); .l~(x, y) and

.l~~(x’, y’) are the basis and testing functions, respectively,

and are given by

sinke(a – Iy – y~l)
Jn(x, y) = ~~& >

sin kea

IY - Yml < a (jga)

and

sinke(a – Iy’– y~l)
J;(x’, y’)= 8(X’)-

sin k,a ‘

where (2 w ) is the width of the strip

(

L
a=lY.+l– Y.l=~

1

and ke is the effective wavenumber of the PS basis func-

tion. After incorporating (58a), (58b), and (1) into (57),

using integration by parts, and performing the integration

along x’, one will get

{
ke[P(y~+a)+P(y~–a)

–2cos(kea)P(y~) ]–k~.

[J,~_.a[Qlsin(~~(y-.v~-a))dY
.fn

+~Y”+”[Q]sin(k,( y~+a-y))dy
Y., 1)

.sin(k, (a – Iy’– ynl)) dy’dx

where

Er—l
P=(J– —w

Cr

(59)

(60a)

(60b)

and the efficient representations of U and W for small and

large lateral separations are given in (12), (13), and (29),

respectively. Note that if k, = ko, Q is given by W multi-

plied by a constant.

The double integrals of y and y’ variables in (59) can be

transformed to a single integral via a rotation of coordi-

nate system [3], i.e.,

1
u=~(Y’+Y) U=J Y’–Y)

fi(
dy’ dy ==dudu

(61a)

Jy’nJ’’’mQ(v.+Y)j(Y(v))dY)dY’dY
Y1” .!%

110

+ L/ ‘)+@’”” Q(u, u) dudv (61b)
1~1 — u + @ylm
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where

1
“2=~(Y2m-Yin)

“=+(~’~-~’”)

1

%=-@lm-Yin). (61c)

The u dependence can now be integrated analytically.

After normalizing the integral of the u variable between O

and 1 by changing the variation to a, the final result will

be given by

1 kea w 2
Zmn = —

J27rCJC0(sin kea)’ o r~=

(J[ 1 Pl+1’2+ P3+P, -2cos(k,a)(P, +P6)]
o

.sin(k,a(l– a)) da–2k,a

:[/ 0°”5[Q, + Q21[&1 da

1)+~lOIQ,+Qd[&]d~ dX (62)
0.5

where

P =plp=Jx’ +(ym. +a(l*a))21–4

P5,6 = q?=~~ (63a)

Q1-2=Qlp=Jx2+(ymn *2aa,’ (63b)

Ymn = I_Y/n–Al (63c)

and P and Q are given in (60a) and (60b), respectively.

Also

[S1] = (1- a(2+cos(2k,a))cos(2 k,aa)

– asin(2k,a) sin(2k,ua)

+ A [(2+ cos(2k,a)) sin(2keaa)
2k,a

–sin(2k,a) cos(2kcaa)] (64)

[s,] = -(1- a)cos(2k~a(l - a))

+ & sin(2kea(l– a)). (65)
e

It is noted that the formulation of Z~~ given in (59) is very

efficient, particularly if P and Q are given in terms of the

efficient closed-form representations of U and W. For the

case when m = n (the self term), finally y~~ = O, as is

evident from (63c); therefore from (63a) and (63 b),

PI= P’ P3 = P4 P5 = P6 (66)

and

QI=Q2. (67)

For the self term Z_, the numerical integration in the

a domain can be efficiently improved if the singular behav-

ior of P and Q (see (12) and (13)) along with the rest of

the integrand in (62) is analytically integrated in the small
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Fig. 7. Calculated effective dielectric constant as a function of substrate
thckness ((, = 9.7).

interval from zero to da for da in the order of O.1 kea.

Note that for the small interval around the zero, [S’l] in

(64) and sin kea(l – a) in (62) can be approximated by the

two-term Taylor expansions

sin(2k,a)
[s,] =1- Zk a ,

e

sin kea(l – a) = sin(k~a) – (keaa)cosk,a. (68)

Use can also be made of the following identities:

(69a)

(69b)

V. RESULTS AND CONCLUSIONS

Considering first the calculation of the effective dielec-

tric constant of a microstrip line, Fig. 7 shows a compari-

son between results obtained using the approach described

in Section III and those reported by Kobayashi and Ando

[14]. In this case, the relative dielectric constant is assumed

to be c, = 9.7, and the effective dielectric constant is

plotted as a function of d/Ao, with 2 w/d as a parameter,

for 2 w/d= 0.1 and 1. As can be seen, the agreement is

excellent for 2 w/d = 0.1, but a slight discrepancy (less

than 2.5 percent in the worst case) arises in the curve

corresponding to 2 w/d =1. The reason for this is that the

actual current distribution on the strip begins to differ

from the Maxwell function when w increases. Closed-form

expressions for the current distribution as a function of the

aspect ratio 2 w/d have been given by Kobayashi [22], and
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can easily be incorporated into our formulation. Finally,

Fig. 8 shows another comparison with results given by

Katehi and Alexopoulos [15]. The dielectric constant is

now 9.6, and the effective dielectric constant is plotted as a

function of frequency for 2W = d = 0.6 mm. The slight

discrepancy (of the order of 1 percent) between the two

results is attributed to the effective width w, used in [15] to,

account for conductor thickness.

On the other hand, Fig. 9 shows the input impedance

(real and imaginary parts) of the strip dipole of Fig. l(b)

versus normalized length (with respect to the free-space

wavelength). The microstrip dipole antenna has a width of

O.OlhO. For dipoles with a length less than 0.2A0, only a
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single PS mode is used, and for larger dipoles three ex-

pansion (PS) modes with an effective wavenumber

( ke = kO~~)/2 ) have been utilized. It is noted that

the resonant length of the strip dipole is a function of

substrate thickness and dielectric constant, and it is less

than the resonant length of the strip dipole in free space.

This is due to the fact that the presence of the substrate

increases the effective electrical length of the strip dipole.

Two resonance phenomena have been observed (which

yield a purely real in]put impedance). The first is at L =

0.29A ~ and the second is at L = 0.58A0, where L is the

length of the dipole. The quantities 0.29A0 and 0.58X0 are

the “effective” half and full wavelength of the air–dielec-

tric substrate structure. It is also noted that the reactive

part of the impedance is strongly dependent on the width

of the strip. This can be seen by modeling the input

impedance of the strip dipole as the mutual impedance

between the two nearby filament currents over the

grounded dielectric slab in which their lengths are equal to

the length of the original strip dipole and their lateral

separation is a function of its width [24]. In this configura-

tion, the real part of the mutual impedance is almost

constant; however, the reactive part is proportional to the

logarithm of the inverse of the lateral separation. It is

noted that for the calculation of the input impedance of

Fig. 9, the efficient closed-form representations of U and

W given in (29) were utilized over 30-40 percent of the

time, which results in a significant savings in computa-

tional time for even such a small structure.

In conclusion, it has been shown how the efficient

closed-form asymptotic representation of the grounded

dielectric slab Green’s function is incorporated into the

solution of two canonical problems in microstrip circuit/

antenna analysis. The advantages of these closed-form

expressions are apparent: since they only involve reliitively

simple and well-known functions, their calculation is far

more efficient than numerical integration, even when some

analytical treatment is incorporated to speed up the con-

vergence. On the other hand, they provide more physical

insight since the asymptotic closed-form Green’s function

describes the field contributions as arising separately and

explicitly from such phenomena as surface, leaky, and

space waves. These features make the combination method

of moments/asymptotic Green’s function look very

promising for analyzing microstrip structures.

APPENDIX

THE TRANSITION FUNCTION F(x)

The transition function F(x) is defined in [23] as fol-

lows :

F(x) = 2j&eJ-’!we-J’’dt, –
&

where x can be complex. The branch

in (Al) is chosen as defined in [9].

~<arg(x).:~

(Al)

cut definition of &
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It can be shown that, with this definition of F,

. +zjfie-”b~(+ jb@), Ire(b) ZO

(A2)

where Q is a real positive number and b is complex in

general. Q is the transition function defined in [8].

Since the proper and improper surface wave poles con-

sidered throughout the paper are such that in the s plane

bi = + eJ”/4B, (+ for pswp; – for iswp), Bi being a real

positive number, (Al) can be expressed as

(A3)

where C(z) and S(z) are Fresnel integrals, defined as

c(z) =Jzcos (1;t2 dt
(1

S(Z) =~zsin ~t2 dt.
o

(A4)
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