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Abstract — A newly developed closed-form asymptotic representation of
the grounded dielectric slab Green’s function can be very efficiently
applied to analyze planar microstrip configurations. In this study, such a
representation is used in a moment method formulation to calculate the
propagation constant of an infinite microstrip transmission line and the
input impedance of a finite length, center-fed printed dipole. In these
problems, source and field points are laterally rather than vertically sepa-
rated with respect to the substrate. The conventional Sommerfeld integral
and the plane wave spectral integral (PWS) representations of the mi-
crostrip Green’s function converge very slowly in this case. However, the
asymptotic closed-form representation of the Green’s function” does not
have this limitation, and it remains accurate even for very small lateral
separation between source and observation points. Only for observation
points in the immediate vicinity of the source is a modified form of the
Sommerfeld integral representation used, while the asymptotic form is
employed elsewhere. Some numerical results based on this approach are
presented and are shown to compare very well with previous results based
on the corresponding exact-integral or PWS forms of the Green’s func-
tion.

1. INTRODUCTION

HE INCREASING interest in monolithic microwave

integrated circuit (MMIC) technology has led to the
need for accurate, rigorous characterization of passive cir-
cuit and radiating elements, especially in millimeter-wave
regimes. In microstrip structures, CAD tools capable of
handling a wide range of dielectric constants and substrate
thicknesses are required. Although “full-wave” (moment
method based) analyses of some microstrip geometries
have been reported recently, they involve an enormous
computational effort to numerically evaluate the grounded
dielectric slab Green’s function, either in its plane-wave
spectral (PWS) integral representation [1] or in terms of
Sommerfeld-type integrals [2]. This effort has been shown
to be reduced drastically by using asymptotic forms of the
Sommerfeld integrals [3], [4], even valid for observation
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Fig. 1. Geometry of an (a) infinite microstrip line and (b) center-fed
printed dipole.

points very close to the source. The purpose of this paper
is to show the application of this newly developed asymp-
totic closed-form approximation of the microstrip Green’s
function to solve some planar canonical microstrip config-
urations. This efficient asymptotic Green’s function is
specifically applied to the calculation of the propagation
constant of an infinite microstrip transmission line and the
input impedance of a finite-length center-fed microstrip
dipole, shown in Fig. 1(a) and (b), respectively.

The format of this paper is as follows. First, Section II
deals with the conventional Sommerfeld integral represen-
tation of the grounded dielectric slab (microstrip) Green’s
function and its closed-form asymptotic approximation.
Section III describes their application to the evaluation of
the propagation constant of an infinite microstrip line,
while a moment method (MM) formulation for the input
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impedance of a center-fed microstrip dipole is presented in
terms of these Green’s functions in Section IV. Finally,
Section V is dedicated to numerical results and conclu-
sions.

II. THE GROUNDED DIELECTRIC SLAB GREEN’S
FuNcTION— CONVENTIONAL INTEGRAL
AND ASYMPTOTIC FORMS

In this section, we will restrict our attention to the jj
component of the grounded dielectric slab Green’s func-
tion (G,,), since it will be the only one used throughout
the paper. It represents the j-directed electric field at
(x, y) due to a j-directed electric dipole of unit strength
located at (x’, y’). For source and observation points both
lying on the surface of the slab, G,, can be written in
terms of the conventional Sommerfeld-type integrals as

(31, (4]

-1 9* €,—1
ny(p) = 27Tw€0{k%U+?9—)—/‘—2-|:U_ . W]} (1)
where
p=y(x—x)+(y—»)
U= [“n(te) Fi(g) dg 2)
W= [O‘”JO )F, (&) d¢ (3)
and
3
F(¢)= (D) (4)
K2-g
F (5) =L =E )

D,(¢)-D,(¢)
D,(£) =k -8 - je k2 - ¢ -cot[d erké—éz] (6)

DA(8) = ki€ + LI an[afe ki €]
™)

In the above equations, k, is the free-space wavenumber,
d the slab thickness, and ¢, the relative dielectric constant
of the substrate. In the following, ¢, will be assumed to be
a real number (lossless case). As will be shown later, the
second derivative in (1) can be removed using integration
by parts, so the problem of computing the Green’s func-
tion reduces to one of evaluating the functions U and W.
Two main problems arise in the numerical evaluation of
(2) and (3). First, the integrands exhibit a certain number
of poles (zeros of D,, D, ) and, second, the slowly decaying
oscillatory behavior of the Bessel function results in a poor
convergence of the integrals.

A. Numerical Evaluation of U, W for p Small

A relatively efficient technique for evaluating U and W
when p is small (less than one or two free-space wave-
lengths) is the so-called asymptotic (not to be confused
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with the closed-form asymptotic representation of the
Green’s function) extraction technique [3], [5], [6]. One
first notes that the functions F, , in (2) and (3) tend to
certain limiting values for ¢ large:

=@amﬁ (®)
hmF(g)—i(:’l. (9)

»

Therefore, we can rewrite (2) and (3) as

U=F7 [h(ee) de+ [h(o8) (F(€)- B dE (10)

W=Er [h) de+ [T g (08){F ()= F2) dt.
0 0

(11)

Since the first integral has a closed-form result and the
integrand in the second becomes zero for § large, we can
finally write the above equations as

(12)

fffo( of) F,(£) dt

W= (13)
where £2 and £% are those values of £ for which F, = F/®
and F,_ = F*. These expressions for U and W have two
important advantages over (2) and (3). First, the singular-
ity in U and W has been explicitly extracted (1/p term).
Second, the infinite integration has been reduced to a
finite interval. Typical values of £%, &% for p=0 (most
unfavorable case) range around SkO\/g .

To deal with the poles of F/, in (12) and (13), one uses
conventional singularity extraction techniques [3], [5].
These poles will be located on the real £ axis for the
lossless case, in the region [k, ko\/Z ]. Their number and
location depend on the wavenumber, the dielectric con-
stant, and the substrate thickness and can be easily found
using a Newton—Raphson search algorithm with appropri-
ate starting values [7].

The main limitation of this approach comes from the
highly oscillatory behavior of the integrands in (12) and
(13) for large values of p. This makes numerical integration
very inefficient.

ngo( pE) F/(¢) dt

B. Asymptotic Closed Forms of U, W for p Large

Although the details of the derivation of the asymptotic
representation can be found in [4], we will summarize the
procedure here as follows.

First, and due to the oddness of F,

o integrals (2) and
(3) can be written as

_1 O (o) d 14
U—EfGFu(s)Ho (pt) dt (14)

1
=5 [ R (&) P (p8) dt (15)
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Fig. 2. Original Sommerfeld contour of integration (C;) and its defor-
mation to give the sum of the enclosed residues plus the integral
around the branch cut (C).

where C, is the path shown in Fig. 2. This path C; can be
deformed into C as shown in Fig,. 2 to give the sum of the
enclosed residues plus the integral around the branch cut:

1 : 1
U=- 2 L2mjR,(£)H (0t,) + EfFu(é)Ho‘Z)(PS) d§
. C
(16)
1 1
W=~ L2miR,(§)HE (p8) + 5 [ F(€) H(p8) di
; C

(17)

where R, ,, are the residues of F, , in (4) and (5) at §=§,
(surface Wave poles) [4], [7]. The 1ntegra1 around the branch
cut can be transformed to a real-axis integral by introduc-
ing the change of variable

~7dt
=/ki - & df = ——= (18)
k%— 72
to give
1 00 T
= — (2) —
I, 5 f_oo De(T) (p\/ko T )d'r (19)
1 e P
1, . (20)
2 -0 De(T)'Dm(T)
Now consider the general integral
1 ;0
-5/ mF(T)Héz)(p\/k(z) —72)dr (21)

which can be written in a more convenient form, using the
change of variable 7=k, as

=507 Rk B (kop 1= an. ()

For kgp large, we can use the large-argument form of the
Hankel function:

ko
I.,_

e kopyL—7* dn.
(23)

/4f F(ken)
Wkop o0 [1

2]1/4
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Fig. 3 Topology in the y plane, showing the original path I' and the
steepest descent path Igpp. The position of proper and improper
surface wave poles (lossless case) is also shown.

Although the saddle point and the steepest descent path
(SDP) can be found directly in the complex 7 plane, it is
more convenient to perform the angular spectrum map-
ping:

7 =cosYy dn=—sinydy. (24)
Then, (23) becomes
ko ._"
B
(25)

The exponential of (25) exhibits a saddle point at y = 7/2.
The original path T and the SDP, denoted by Iy, are
shown in Fig. 3. Also, Fig. 3 shows the position of the
proper and improper surface wave poles for the lossless
case (see [7]). As can be seen, the deformation of the
original path T into I'ypp will never capture any of these
poles. No other poles are assumed to be captured in the
path deformation.

A conventional asymptotic evaluation of (25) can be
carried out via the transformation

cosy=—sys>+2j
2

_

Js2+2j

Now, (25) can be expressed in the complex s plane as

k 2 ‘ o0
I~ _0 - ejﬂ/4e“Jkon G(s)
7k ,0 —o0

siny =1— js?

dy = (26)

e kors” ds (27)

where

27

A second-order asymptotic evaluation [8], [9] of (27) will
give the following result, provided G(0) =0 (which is the

G(s) =F(—~kOS\/52+2j)\ﬁ—j52 (28)
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Fig. 4. Comparison between the exact W (numerical integration, (13))
and its asymptotic approximation (29) for €, =12.8, d =0.12X,.

case for both U and W):

I~ —k—OI [Z Rb) [1- F(jkopb?)]

2 | & 525

5 R(b,) }] (29)

1 (6O
+
2kop 2\/27j i b?\/Z
where
e*jkop
I, = 30
0 J kop ( )
_ ¢
by=+e/™”" [ —-1
ky

+ for proper surface wave poles (31)
— for improper surface wave poles

and G”(0) is the second-order derivative of G(s) in the s
plane, evaluated at s= 0. Doing this for U and W, one

obtains
ye,—1
tg|kodfe, 1|
Er
G/(0) = 4j\/27j- (33)

R(b,) in (29) are the residues of (28) at s=>5, These
residues can be easily related to those of the £ plane at
§=¢ by

. . 1 P
G(0)=4jy2) 7 Y, = (32)
1]

R(¢)
kok:

Finally, F(x) in (29) is the transition function (defined in
the Appendix). Fig. 4 shows a comparison between the
numerical evaluation (13) and the asymptotic representa-
tion (29) for the case €,=12.8 and d =0.12A, when the
source and field points are separated laterally along the
dielectric—air interface. In the asymptotic evaluation, two
proper and two improper surface wave poles are consid-

R(bi) = (34)
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ered [7]. As can be seen, the asymptotic formula provides
excellent results, even for source and field point separation
distances as small as two tenths of a wavelength (A,).
Although the comparison is not as good in all the cases, it
can be said that the lateral source and field point separa-
tions for which the asymptotic solution begins to fail range
typically between 0.2 and 1 wavelength. It should be
mentioned that the above asymptotic result differs slightly
from the one given in [4], where the poles of F i1 (22) are
extracted in the 7 plane, and the resulting regular function
is integrated up to the second-order term in closed form.
The remaining integrals over the singularities are then
approximated by their first-order terms. The difference
between this approach and (29) arises in the second-order
term of the asymptotic result, so the numerical difference
between the two forinulations is irrelevant in most cases,
although (29) has been preferred here for simplicity.

III. CALCULATION OF THE PROPAGATION CONSTANT
OF AN INFINITE MICROSTRIP LINE

The first “full-wave” analysis of an infinite open mi-
crostrip line was reported by Denlinger [10]. By enforcing
the boundary conditions in the spectral domain, he formu-
lated the problem in terms of a pair of coupled integral
equations, using a PWS integral representation for the
fields. To simplify the solution to those equations he
considered only electrically narrow strips, thus neglecting
the transverse component of the current and assuming a
known analytic variation of the longitudinal component
along the transverse direction. Itoh and Mittra [11] numer-
ically solved Denlinger’s equations in the spectral domain,
expanding both current components over a set of basis
functions and applying Galerkin’s method to obtain a
matrix equation. Later, Farrar and Adams [12] and Jansen
[13] extended the analysis to higher order modes and
coupled microstrip lines. Recently, Kobayashi and Ando
[14] presented a simplified spectral-domain formulation by
using closed-form expressions for the longitudinal and
transverse current distributions. Katehi and Alexopoulos
[15] used the Sommerfeld integral representation for the
grounded dielectric slab Green’s function to compute the
propagation constant of electrically narrow lines. They
expanded the current along the longitudinal direction and
applied Galerkin’s method, assuming a known analytic
variation of the current ih the transverse direction.

Since the main purpose of this paper is to show the
usefulness of the closed-form asymptotic representation
for the Green’s function, we have also restricted our atten-
tion to electrically narrow strips. This simplifies the formu-
lation to only one current component. Also, a known
analytic variation of this current along the transverse di-
rection will be assumed.

The boundary condition is enforced in the spatial do-
main, and the Green’s function is expressed in terms of
Sommerfeld-type integrals. These integrals are evaluated
using the numerical method described in subsection II-A
when the distance between source and observation points
is small, but the closed-form asymptotic expressions of
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(29) are employed when the separation becomes larger.
Since the spatial formulation requires an integration over
the infinite length of the strip, the availability of a closed-
form expression not only saves computer time, but also
allows analytic integration when the current element is far
enough. Both facts make possible a very efficient spatial-
domain solution.

A. The Boundary Condition
Consider an infinite microstrip line (Fig. 1a) in which
the current is flowing in the p direction. For electrically
narrow strips and the fundamental mode it can be as-
sumed that the £ component of that current is negligible,
so the current vector may be written in the form
J(x,y)=F(x) e/

(35)

where F(x) is the function describing the variation of the
current density along the x direction, and k&, is the propa-
gation constant of the mode. Furthermore, F(x) = F(— x)
via symmetry conditions fulfilled by F(x). A widely used
form of F(x) which enforces the edge condition is

FM(x)={ Joiogz IS

(36)

0, otherwise.

This distribution was first proposed by Denlinger [10], who
referred to it as Maxwell’s function, because it was derived
by Maxwell for the charge density distribution on an
isolated conducting strip.

1t is clear that the tangential electric field produced by J
in (35) must vanish at any point on the metallic strip. This
field can be written as

E, (k. x,y)

=/ f F(x') e G, (x,y,x',y") dx'dy'= 0,

x, y €sttip  (37)
where G,, represents the j-directed electric field at (x, y)
due to a j-directed electric dipole of unit strength placed
at (x’, y’). The above equation is of the form /(k,) =0,
where # is the operator in (37). Such an equation can be
solved using simple search techniques, such as the interval
halving method or Newton’s method.

Equation (37) admits further simplification if the point
(x, y) selected to enforce the boundary condition is the
center of the strip (0,0). In that case, the symmetry of the
problem and the oddness of the imaginary part of the
exponential reduce (37) to

w [ee]
fOF(x’)f G,,(x', y)cos(k,y’) dx'dy’ = 0. (38)
— o0

This equation will be the basis of our calculations and will
be referred to as the boundary condition in the spatial
domain.
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B. Field Calculation

. From (1) and (38) the j-directed electric field at the
origin can be written as

E,(k,,0,0) « /O "F(x)I(k,, x) dx’ (39)

with

0 32 6,—1
I(ke,x/)zfo {k§U+ ayz[U— - W}}

-cos(k,y’)dy’. (40)

The second derivative before the brackets can be removed
using integration by parts to give

o)
I(k,,x')= k(z,/ Ucos(k,y')dy’
0

_kff:){U—e’:l

r

W} cos(k,y’)dy’ (41)

where use has been made of the following (from (2)—(7)):

aG aG (@2

ay - ay/ a)

lim G(x,y,x",y)=0 (42b)
3P 00

3 ,

lim ——G(x,y,x,y')=0 (42¢)
y'—ew 0y

lim ——G(x,y,x,y)=0 (42d)
(y=y)—00y

where G represents cither U or W. Now the problem has
been reduced 1o that of computing two integrals of the
form

: )
I9(k,, x") =/ Gceos(k,y') dy’ (43)
0
where G again represents U or W.
From (12) and (13) we know that G has a singularity of
the type 1/p:
Fw
G=—+G
p
where G’ represents the nonsingular part of G. .
Such a singularity can be integrated analytically to give

FOO
———cos(k,y’) dy’= F*K,(k,x") (45)

o)
fo \/;B+y'2

where K|, is the zero-order modified Bessel function.
Finally we have

I%(k,,x") = F°K,(k,x")+ 6’ cos k,y')dy'. (46)
e 0 e o

(44)

The integral on the right-hand side of (46) can be calcu-
lated numerically, since G’ does not contain any singular-
ity. This numerical integration is terminated at certain y;/
for which the integrals in (16) and (17) become negligible.
From such region to infinity only surface waves exist, and
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their contribution can be evaluated analytically. In most
cases, y/ ranges from five to ten free-space wavelengths.
The value of G in (46) is calculated numerically only for
small distances between source and field points, but the
efficient closed-form asymptotic representation is used
along most of the range of integration.

Going back to (39), the field can then be calculated as

E,(k,,0,0) o (k3 - kf){FuwfowF(x’)KO(kex’) dx’

+ waF(x’)waU’cos(key’) dy'}

€,

+ k2

{F;"j(;wF(x’)Ko(kex') dx’

fw}«“( ) [(Wrcos(k.y) d }
+ x' "cos )dy'}.
A A ey )y
The first integral between braces can again be evaluated
analytically for F(x’) of the form (36) as [16]
w Ko(k,x') P k.w X kw (48

j;) Yw? — x72 ) O( 2 ) 0( 2 ) )
To evaluate the second integral, we first note that the
functions

(47)

19(k,,x') = [ "6 cos (k) dy’ (49)
0

have a quite smooth variation with x’ for small x’, which
is precisely the case for electrically narrow lines. It follows
that these functions can be very accurately approximated
by an nth-order polynomial, namely

I9(k, x') = Ao+ Ayx'+ - + A, x"  (50)

with the advantage that FM(x")-I19(k,x’) can be inte-
grated on x’ in closed form [16]:

wo xrntl 2n!!

fo T = G B
wo x/2ntl , @n-Wta
Lﬁdx=—————(2n)” W (52)

where (2n)!!'=2-4--.(2n),
@2n+1).

Fig. 5 shows the behavior of IV corresponding to the
case of Fig. 4 and its second-order polynomial approxima-
tion (if the order of the polynomial is increased to four, the
value of the integral over x’ differs less than 0.1 percent
from the second-order polynomial value).

So finally, (47) can be writien as

) 5 o7 [ kew k.w
Ey(ke’()’())a(k()_ke) FP 1| —— | Ko

and 2n+DN"=1-3--.

270 2 2
s T
+A33+A;‘w+Agw25}
F‘;°WI kw X k,w
EAEINE

a v
‘ +A3‘E+A;"+A; 25}. (53)

6"

+ k2

€
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Fig. 6. Typical variation of the tangential electric field on the center of
the strip as a function of the propagation constant k, The zero field
boundary condition is satisfied at k, = ko‘/e (6, =128, d =0.12},
2w =0.06X,).

Teft

Now a plot of |E | versus k_/k, should exhibit a zero
at that ke=k0\/§ corresponding to the mode actually
propagating in the transmission line. Fig. 6 shows typical
results.

To automatically find \/i , a Newton—Raphson search

procedure can be implemented in the equation

Re{E,(k,.0,0)} =0. (54)

Using the quasi-static value of V€, Of simply \/e_ as the

¥
starting point, the final value is found in only a few
iterations (normally two to four).



MARIN ef al.: EFFICIENT ANALYSIS OF PLANAR MICROSTRIP GEOMETRIES

IV. MOMENT METHOD SOLUTION FOR THE INPUT
IMPEDANCE OF A CENTER-FED PRINTED
STRIP DIPOLE

The printed dipole was first treated with an assumed
sinusoidal current distribution by Tsandoulas [17] and
Uzunoglu er al. [18]; later Rana and Alexopoulos [19]
introduced the moment method (MM) solution for the
center-fed printed dipole by expanding the unknown cur-
rent of the dipole by piecewise-sinusoidal (PS) basis func-
tions. This work was then extended to different geometries
by Katehi and Alexopoulos [20], [21]. It is noted that the
MM solution of such geometries is very time consuming
because the grounded dielectric slab Green’s function in-
volved in the formulation is very poorly convergent, as
mentioned earlier.

In the following, an efficient MM calculation of the
input impedance for the printed strip dipole shown in Fig.
1(b) will be discussed. The printed strip dipole considered
here is center-fed by a delta gap generator and has the
length L and the width 2w. The unknown longitudinal
current on the strip has been expanded by N overlapping
PS basis functions. The transversal current variation is
chosen such that the current satisfies the edge condition
[3], [21] and is in the form of (36).

The MM matrix equation is then formulated as

[Z,[1,]1=[V,]

NXNNX1 NX1

(55)
where Z,,, is the reaction between the test function » and
the basis function m; the I,’s are unknown coefficients of
the basis functions which ought to be determined from the
above matrix equation and the V,’s are excitations. For the
center-fed delta gap generator type excitation, the input
impedance of the printed strip dipole Z,, is numerically
given by
V4 ! 56)
in I(O) (
where 1(0) is the value of the current at the center of the
strip dipole.
The efficient evaluation of Z,,, is the key to an efficient
MM solution for the input impedance of the printed strip
dipole. In the following such efficient formulation of Z,,,

will be presented. It is recalled that Z, , can be written
as [3]

e LS e

G, J(x,y)dx dy'dxdy (57)
where G, is the jj component of the microstrip dyadic
Green’s function and was given in (1); J (x,y) and
JI(x’, y") are the basis and testing functions, respectively,
and are given by

1 sink,(a—=|y= .l

J.(x,y)=
(X, y) T

Ed

sink,a

|y =yl <a (58a)
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and
sink,(a—1y" = y,))
]T /, N=4 ’ \ o <
(', y7) =8(x) nk.a |y’ =yl <a
(58b)

where (2w) is the width of the strip

(a=|ym+1 yml N+1)

and k, is the effective wavenumber of the PS basis func-
tion. After incorporating (58a), (58b), and (1) into (57),
using integration by parts, and performing the integration
along x’, one will get

1 1
Z

w 2 'V, +a
nm ; 2/ f
2nweq (sink,a)"Jo ayw?—x% 7y -4

{ke[P(ym+a)+P<ym—a)

—2cos(k,a)P(y,)] — k%

[fym_a[lein(ke(y — = a))dy

Ym ~

[ Telsn(k ot a-n)a |

Im

sin(k,(a—1y' ~y,l) d'dx (59)

where
e, —1
P=U- w (60a)
EI‘
k2 e,—1
o=|1~ 2 U- w (60b)
e €r

and the efficient representations of U and W for small and
large lateral separations are given in (12), (13), and (29),
respectively. Note that if k, =k, Q is given by W multi-
plied by a constant.

The double integrals of y and y’ variables in (59) can be
transformed to a single integral via a rotation of coordi-
nate system [3], i.e.,

dy’dy = dudv
(61a)

= () o= (=)

[ o+ ). =) &' dy

Yin " Vim
—v+y2y,
"Q(u,v) dudv
‘/;0 '[L+\/~Y1
+fl0fv+‘f‘2" Q(u,v) dudv (61b)
v+ 2)1m N
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where

1 1
U2="/7(J’2m_)ﬁn) Ul=‘ﬁ(Y1m_y2n)

1
UOZ_‘/—E—(ylm_yln)‘ (61C)
The u dependence can now be integrated analytically.
After normalizing the integral of the v variable between 0
and 1 by changing the variation to «, the final result will
be given by

1 k.a

Z
2nweqy (sink,a)

mn

/w 2

2Dy afw? — x2

-{fl[P1+P2+P3+P4—2cos(kea)(P5+PG)]
0

-sin(k,a(1- &) da—2k,a

| [F1e+0ulisi e

+£;%Qf+QﬂL$]m4}dx (62)

where

Py ,= P|p=\/x2+(ymnta(1ia))2

=P oy 2 ae? (63a)
Q1—2=Q|p=‘/x2+(ym,,j2aa)2 (63b)
Youn =Y = Yl (63c)

and P and Q are given in (60a) and (60b), respectively.

Also
[5,]1=(1—a(2+cos(2k,a))cos 2k, aa)

— asin (2k a)sin (2k ,ae)

+ 2k [(2+cos(2k,a))sin (2k ,aa)

—sin (2k,a)cos (2k aa)]
[S,]=—(1—a)cos(2k,a(1— a))

~ a)).

It is noted that the formulation of Z,,, given in (59) is very
efficient, particularly if P and Q are given in terms of the
efficient closed-form representations of U and W. For the
case when m=n (the self term), finally y,,=0, as is
evident from (63c); therefore from (63a) and (63b),

P,=P, P,=P, P;=P,

(64)

+ k. sin (2k ,a( (65)

(66)

and

01=0,. (67)
For the self term Z,,,, the numerical integration in the
a domain can be efficiently improved if the singular behav-
ior of P and Q (see (12) and (13)) along with the rest of

the integrand in (62) is analytically integrated in the small
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Fig. 7. Calculated effective dielectric constant as a function of substrate
thickness (€, = 9.7).

0.10

interval from zero to 8, for §, in the order of 0.1 k,a.
Note that for the small interval around the zero, [S;] in
(64) and sin £ ,a(1 — «) in (62) can be approximated by the
two-term Taylor expansions

§1-1 sin(2k a)
[ 1] =i 2kea ’
sink,a(l—a) =sin(k,a)— (k,aa)cosk,a.” (68)
Use can also be made of the following identities:
f lna+ —+a®| (69a)
Vx*+(aa) a
and
[— \/ a®.  (69b)
Vx2+ (aa)®

V. REesuLTs AND CONCLUSIONS

Considering first the calculation of the effective dielec-
tric constant of a microstrip line, Fig. 7 shows a compari-
son between results obtained using the approach described
in Section HI and those reported by Kobayashi and Ando
[14]. In this case, the relative dielectric constant is assumed
to be ¢,=9.7, and the effective dielectric constant is
plotted as a function of d /A, with 2w/d as a parameter,
for 2w/d =0.1 and 1. As can be seen, the agreement is
excellent for 2w/d = 0.1, but a slight discrepancy (less
than 2.5 percent in the worst case) arises in the curve
corresponding to 2w/d =1. The reason for this is that the
actual current distribution on the strip begins to differ
from the Maxwell function when w increases. Closed-form
expressions for the current distribution as a function of the
aspect ratio 2w/d have been given by Kobayashi [22], and
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can easily be incorporated into our formulation. Finally,
Fig. 8 shows another comparison with results given by
Katehi and Alexopoulos [15]. The dielectric constant is
now 9.6, and the effective dielectric constant is plotted as a
function of frequency for 2w =d =0.6 mm. The slight
discrepancy (of the order of 1 percent) between the two
results is attributed to the effective width w, used in [15] to
account for conductor thickness.

On the other hand, Fig. 9 shows the input impedance
(real and imaginary parts) of the strip dipole of Fig. 1(b)
versus normalized length (with respect to the free-space

" wavelength). The microstrip dipole antenna has a width of
0.01X,. For dipoles with a length less than 0.2A,, only a

677

single PS mode is used, and for larger dipoles three ex-
pansion (PS) modes with an effective wavenumber
(k,=ky/(€,+1)/2) have been utilized. It is noted that
the resonant length of the strip dipole is a function of
substrate thickness and dielectric constant, and it is less
than the resonant length of the strip dipole in free space.
This is due to the fact that the presence of the substrate
increases the effective electrical length of the strip dipole.
Two resonance phenomena have been observed (which
vield a purely real input impedance). The first is at L =
0.29A, and the second is at L =0.58A, where L is the
length of the dipole. The quantities 0.29A, and 0.58\, are
the “effective” half and full wavelength of the air-dielec-
tric substrate structure. It is also noted that the reactive
part of the impedance is strongly dependent on the width
of the strip. This can be seen by modeling the input
impedance of the strip dipole as the mutual impedance
between the two nearby filament currents over the
grounded dielectric slab in which their lengths are equal to
the length of the original strip dipole and their lateral
separation is a function of its width [24]. In this configura-
tion, the real part of the mutual impedance is almost
constant; however, the reactive part is proportional to the
logarithm of the inverse of the lateral separation. It is
noted that for the calculation of the input impedance of
Fig. 9, the efficient closed-form representations of U and
W given in (29) were utilized over 30-40 percent of the
time, which results in a significant savings in computa-
tional time for even such a small structure.

In conclusion, it has been shown how the efficient
closed-form asymptotic representation of the grounded
dielectric slab Green’s function is incorporated into the
solution of two canonical problems in microstrip circuit/
antenna analysis. The advantages of these closed-form
expressions are apparent: since they only involve relatively
simple and well-known functions, their calculation is far
more efficient than numerical integration, even when some
analytical treatment is incorporated to speed up the con-
vergence. On the other hand, they provide more physical
insight since the asymptotic closed-form Green’s function
describes the field contributions as arising separately and
explicitly from such phenomena as surface, leaky, and
space waves. These features make the combination method
of moments/asymptotic Green’s function look very
promising for analyzing microstrip structures.

APPENDIX
THE TRANSITION FUNCTION F(x)

The transition function F(x) is defined in [23] as fol-
lows:

s 3q a
F(x) =2 jy/x e f;e‘/’“dt, - <ane(x) <5
(A1)

where x can be complex. The branch cut definition of \/—x-
in (A1) is chosen as defined in [9].
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Tt can be shown that, with this definition of F,

0 8—932 1 T
- ——\/= F(jop?
f_ws—bds 5\ g £l

+2 7 e (F jb/RQ),

|

0

Im(b) 20
(A2)

where & is a real positive number and b is complex in

general. Q is the transition function defined in {8].

Since the proper and improper surface wave poles con-
sidered throughout the paper are such that in the s plane
b,= + e/™/*B, (+ for pswp; — for iswp), B, being a real
positive number, (A1) can be expressed as

F(jab?) = F(-0B})

= 2e /"/4/Q B, e /B
1

Vo s [T c /mB
T—e 2 7
20
+js|y/ — B,
T

where C(z) and S(z) are Fresnel integrals, defined as

S(z)= j:sin(%tz) dt.
(Ad)

(A3)

C(z)= j:cos(-gtz) dr

It is also useful to note that, for Qb; large,

Qb?) ~1 L 1o ! (A5)
Qb)) ~1+ —— )
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